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This paper deals with the ground state of an interacting electron gas in an external potential v (r). I t is 
proved that there exists a universal functional of the density, F£n(r)2, independent of v(r), such that the ex­
pression E= Jv{t)n{t)dr-\-F[n(r)'] has as its minimum value the correct ground-state energy associated with 
V(T). The functional F[n(r)2 is then discussed for two situations: (1) n(r)=no-\-n(r), ft/no<<1, and 
(2) n(r) = <p (r/f o) with <p arbitrary and ro —»°o. In both cases F can be expressed entirely in terms of the cor­
relation energy and linear and higher order electronic polarizabilities of a uniform electron gas. This approach 
also sheds some light on generalized Thomas-Fermi methods and their limitations. Some new extensions of 
these methods are presented. 

INTRODUCTION 

DURING the last decade there has been considerable 
progress in understanding the properties of a 

homogeneous interacting electron gas.1 The point of 
view has been, in general, to regard the electrons as 
similar to a collection of noninteracting particles 
with the important additional concept of collective 
excitations. 

On the other hand, there has been in existence since 
the 1920's a different approach, represented by the 
Thomas-Fermi method2 and its refinements, in which 
the electronic density n(r) plays a central role and in 
which the system of electrons is pictured more like a 
classical liquid. This approach has been useful, up to 
now, for simple though crude descriptions of inhomo­
geneous systems like atoms and impurities in metals. 

Lately there have been also some important advances 
along this second line of approach, such as the work of 
Kompaneets and Pavlovskii,3 Kirzhnits,4 Lewis,5 Baraff 
and Borowitz,6 Baraff,7 and DuBois and Kivelson.8 The 
present paper represents a contribution in the same area. 

In Part I, we develop an exact formal variational 
principle for the ground-state energy, in which the den­
sity n(r) is the variable function. Into this principle 
enters a universal functional F[n{t)"}, which applies to 
all electronic systems in their ground state no matter 
what the external potential is. The main objective of 
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theoretical considerations is a description of this 
functional. Once known, it is relatively easy to deter­
mine the ground-state energy in a given external 
potential. 

In Part II , we obtain an expression for F[n} when n 
deviates only slightly from uniformity, i.e., n(r) = no 
+n(r), with n/no—>0. In this case F[_n] is entirely 
expressible in terms of the exact ground-state energy 
and the exact electronic polarizability a(q) of a uniform 
electron gas. This procedure will describe correctly 
the long-range Friedel charge oscillations9 set up by 
a localized perturbation. All previous refinements of the 
Thomas-Fermi method have failed to include these. 

In Part I I I we consider the case of a slowly varying, 
but not necessarily almost constant density, n(t) 
= <p(r/Vo)> fo ~^cc • For this case we derive an expansion 
of F[n~] in successive orders of r^1 or, equivalently of 
the gradient operator V acting on n(x). The expansion 
coefficients are again expressible in terms of the exact 
ground-state energy and the exact linear, quadratic, 
etc., electric response functions of a uniform electron 
gas to an external potential v(r). In this way we recover, 
quite simply, all previously developed refinements of 
the Thomas-Fermi method and are able to carry them 
somewhat further. Comparison of this case with the 
nearly uniform one, discussed in Part I I , also reveals 
why the gradient expansion is intrinsically incapable 
of properly describing the Friedel oscillations or the 
radial oscillations of the electronic density in an atom 
which reflect the electronic shell structure. A partial 
summation of the gradient expansion can be carried 
out (Sec. III.4), but its usefulness has not yet been 
tested. 

I. EXACT GENERAL FORMULATION 

1. The Density as Basic Variable 

We shall be considering a collection of an arbitrary 
number of electrons, enclosed in a large box and moving 

9 J. Friedel, Phil. Mag. 43, 153 (1952). 
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under the influence of an external potential v(r) and where F\jf\ is a universal functional, valid for any 
the mutual Coulomb repulsion. The Hamiltonian has number of particles11 and any external potential. This 

functional plays a central role in the present paper. 
(1) With its aid we define, for a given potential v(r), the 

energy functional 

the form 

where10 
H=T+V+U, 

s - f v ^ ( r ) v * ( r ) & , 

2 J r - r ' 

(2) 

(4) 

We shall in all that follows assume for simplicity that 
we are only dealing with situations in which the ground 
state is nondegenerate. We denote the electronic density 
in the ground state \F by 

n(r)=(%f*(r)f(r)*), (5) 

which is clearly a functional of v(r). 
We shall now show that conversely v(r) is a unique 

functional of n(i), apart from a trivial additive constant. 
The proof proceeds by reductio ad absurdum. As­

sume that another potential v'(r), with ground state 
&' gives rise to the same density n(r). Now clearly 
[unless v'(r) — v(r) = const] \F' cannot be equal to ty 
since they satisfy different Schrodinger equations. 
Hence, if we denote the Hamiltonian and ground-state 
energies associated with \F and ^ by H, H' and E, Ef, 
we have by the minimal property of the ground state, 

that 

E'<E+ [^(r)-»(r)>(r)(/r. (6) 

Interchanging primed and unprimed quantities, we find 
in exactly the same way that 

E<E'+ J [y(r) — vf (x)~]n(x)dr. (7) 

Addition of (6) and (7) leads to the inconsistency 

E+E'<E+E'. (8) 

Thus v(x) is (to within a constant) a unique functional 
of n(x); since, in turn, v(x) fixes H we see that the full 
many-particle ground state is a unique functional of 
»(r). 

2. The Variational Principle 

Since ^ is a functional of n(x), so is evidently the 
kinetic and interaction energy. We therefore define 

FZn(t)l=(%(T+U)*), (9) 

Ev[ri]= j v {x)n(x)dx+F[rf\. (10) 

C3"\ Clearly, for the correct n(x), Ev[n] equals the ground-
state energy E. 

We shall now show that Ev[_n] assumes its minimum 
value for the correct n(x), if the admissible functions 
are restricted by the condition 

] - / . N[n]= / n(r)dt=N. (11) 

It is well known that for a system of N particles, the 
energy functional of >£' 

& [ ^ ] s ( ^ , 7 ^ ) + ( * ' , (T+UW) (12) 

has a minimum at the correct ground state ^ , relative 
to arbitrary variations of & in which the number of 
particles is kept constant. In particular, let ty' be the 
ground state associated with a different external po­
tential v'(r). Then, by (12) and (9) 

= / v(x)n 

(#+?M, 
(13) 

>$m- (r)dt+FZn\. 

Thus the minimal property of (10) is established rela­
tive to all density functions n'(x) associated with some 
other external potential z/(r).12 

If F\jt] were a known and sufficiently simple func­
tional of n, the problem of determining the ground-state 
energy and density in a given external potential would 
be rather easy since it requires merely the minimization 
of a functional of the three-dimensional density func­
tion. The major part of the complexities of the many-
electron problems are associated with the determination 
of the universal functional F[n~]. 

3. Transformation of the Functional F[n} 

Because of the long range of the Coulomb interaction, 
it is for most purposes convenient to separate out from 

10 Atomic units are used, 

11 This is obvious since the number of particles is itself a simple 
functional of n(t). 

12 We cannot prove whether an arbitrary positive density distri­
bution w'(r), which satisfies the condition jn'(r)dr=integer, can 
be realized by some external potential v'(t). Clearly, to first order 
in w(r), any distribution of the form »'(r)=«o+#(r) can be so 
realized and we believe that in fact all, except some pathological 
distributions, can be realized, 
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F[n~] the classical Coulomb energy and write and 

1 r n(r)n(r') / K(r)dr=0. (23) 
F[w]=- / W + G H , (14) J 

2 J |r—r'| 
Here we clearly must have a formal expansion of the 

so that Ev[n] becomes following sort: 

f 1 fn(t)n(tf) f 
£„[>] = v(r)n(r)dr+- / irrfr /+G[»], (15) G M = G[»o]+ K(r-x/)n(r)n(tf)drdif 

J IJ 1 r—r ' | J 

where G [ > ] is a universal functional like F[n]. + / L(x//')n(x)n(x')n(x")dxdx;dx''-\ . (24) 
Now from the definition of F[n], Eq . (9), and G[n], J 

Eq. (14), we see tha t 
I n this equation there is no term linear in n(x) since 

1 r 1 C C2(r,r /) by translational invariance the coefficient of n(r) would 
G[_n~] = - \ VrVr/Wi(r,rO | t^dx-\- I ——dtdr'. (16) be independent of r leading to zero, by (23). The kernel 

I r ~ r ' appearing in the quadrat ic term is a functional of | r—r' | 
Here W l(r , r ' ) is the one-particle density ma t r ix ; and only a n d m a ^ therefore be writ ten as 
C2(r,r /) is the two-particle correlation function defined K(t—t')= ( l A ^ y K(o)e~iq'(T~lf) (25) 
in terms of the one- and two-particle density matrices as q 

C2(r ,r /) = ^ 2 ( r , r / ; r , r / ) - ^ i ( r , r ) ^ i ( r / , r / ) . (17) The higher order terms will no t be further discussed 
here. 

Of course »i(r , r) = » ( r ) . Q n e m a y a l s o q u « t e t r i v i a l ^ introduce a density 
From (16) we see tha t we can define an energy-density function 

functional 

r - ,_ , ,, g rW = go(«o)+ / f ( r ' )« ( r+ | r ' )« ( r - | r ' y r '+ - • •, (26) 
gxiJij — 2 vrvr/^i^r,r ; | r==r/ / 

1 z1 f fr rV2 • r-A-rf/2) 
_j / n h' (YK\ w ^ e r e ^o(^o) is the density function of a uniform gas of 

2 ./ I r ' I electron density no (kinetic, exchange, and correlation 

such that e n e r ^ ) ' 
G[n]= I gt[n}dr. (19) 2. Expression of the Kernel K in Terms of 

J the Electronic Polarizability 
The fact t ha t gt[n~] is a functional of n follows of course We shall now see tha t the kernel K appearing in 
from the fact t ha t ^ and hence m and n2 are. Eqs. (24) and (26) is completely and exactly expressible 

I t should be remarked, tha t while G [ > ] is a unique i n t e r m s of t h e electronic polarizability a(q). The lat ter 
functional of n, gt[n] is of course not the only possible 1S b r i n e d as follows: Consider an electron gas of mean 
energy-density functional. Clearly the func t iona l density m in a background of uniform charge plus a 

small additional positive external-charge density 

M V W r M + E — A.<«M, (20) »-t(r)=(X/a)E«(q)^-. (27) 
H , ^ Write the electronic density, to first order in X, as 

where the h(i) are entirely arbi t rary, give equivalent w(r) = ^ o + ( X / i 2 ) S b\(q)e~ivr. (28) 
results when used in conjunction with (19). Then 

The following sections deal with G[ri] and gx[_n~] in oi(q) = h(q)/a(q). (29) 
some simple cases. T , , £ ,, , 

^ Let us now define the operator 

II. THE GAS OF ALMOST CONSTANT DENSITY P^T, ck-^cky (30) 

1. Form of the Functionals G[n~] and ~gr[n} 

We consider here a gas whose density has the form w h e r e ^ k * > < * a r e t h e u s u a l creation and annihilation 
operators. Then, by first-order per turbat ion theory, 

n(x) = n0+n(x), (21) 
With h ( , a(q) (0\Pq\n)(n\P^\0) 

0i(q)=--(87r) X — — > (31) 
^(r)Ao«l (22) %2 V EQ_EU 
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so that 
-87T ( 0 | P q | » ) ( » | A - q | 0 ) 

a (q) = £ • 
q2 n Eo-En 

(32) 

Next we express the change of energy in terms oia(q). 
By second-order perturbation theory we have 

\2(4TT)2 | a (q) | 2 ( 0 | p ^ ) W p _ q | 0 ) 

E=E0+ E E — — , 

=EQ— 

0 * q* 

X22TT | a (q) | 2 

Eo—En 

Mq), 
o * 

X22TT | ^ ( q ) | 2 

= Eo E • 
12 i a(?)?2 

On the other hand, combining Eqs. (15), (24), (25), 
and (28) gives 

f 1 fn(x)n(r') 
E= / v(r)n(r)+- / dxdx'+G[ri] 

J 2 J | r - r ' | 

X24TT | ^ i ( q ) | 2 X22x | 6 i ( q ) | 2 

= £ o E - — + — E — — 
a(?)?2 

+ - L ^ ( q ) I M q ) l 8 . (34) 
12 

Comparison of Eqs. (33) and (34) gives 

K(q) 
271-r l 

1 
q^a(q) J 

Equivalently, in terrns of the dielectric constant, 

1 
*(?) = 

we may write 

* ( * ) = -

l - a ( g ) 

2TT 1 

(35) 

(36) 

(37) 
q2 e(q)-l 

3. The Nature of the Kernel K 

The polarizability a(q) has the following properties, 
as function of q (see Fig. 1) 

g-> 0: a(g)= l + ^ 2 + ^ 4 + • • • ; (38) 

q->2kF: da/dq -> - oo ; (39) 

q-^cc : a(q)—> const/g4. (40) 

These general properties are exemplified by the random-
phase approximation in which 

FIG. 1. Behavior 
of the electronic po­
larizability a(q), as 
function of q (elec­
tronic density=4 
XlCFcm-3). 

where kT is the Thomas-Fermi screening constant, 

kT= (4M 1 / 2 (42) 
(33) and 

S(q> 
L 2g\ UF2/ 

q+2kF 

q—2kF 

. (43) 

This gives for 2£(g), by (35), 

q-*0: K(q) = 27rl-~c2+(c22-ci)q
2+ • • • ] ; (44) 

q-*2kF: dK/dq->+ oo ; (45) 

g->oo: ^ ( ^ ) - ^ c o n s t X ^ . (46) 

feee Fig. 2.) 
The power-series expansion of K(q), (43), leads to 

^ ( r ) - 2 7 r [ ~ < ; 2 + ( ^ 2 - ^ ) V 2 + . • -]«(r) , (47) 

which in turn gives 

G[n] = G[#o]+2' {-*/ n(i)2dx 

+ (cii-ci) |V«(r)|8rfr- (48) 

i.e., a gradient expansion. 
At this point an important remark must be made. 

One of the most significant features of K(q)is> its 
singularity at q=2kF. This is responsible for the long-
range Friedel oscillations13 in K(r), 

r —> oo : K(r)~ const cos (2k Fr+ 8)/rz (49) 

These obviously lie outside the framework of the 
power-series expansion (44) of K(q) and hence outside 
the gradient expansion (49) of G[n~}. This explains 
why neither the original Thomas-Fermi method [which 
for the present system reduces to keeping only the first 
term in (44) J, nor its generalizations by the addition of 
gradient terms, have correctly yielded wave-mechanical 
density oscillations, such as the density oscillations in 
atoms which correspond to shell structure, or the Friedel 
oscillations in alloys which are of the same general origin. 

« ( ? ) = [ ! + ( g W W J - 1 (41) 

13 J. S. Langer and S. H. Vosko, Phys. Chem. Solids 12, 196 
(1960). 
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FIG. 2. Behavior 
of the kernel K(q), 
as a function of q 
(electronic density=4 
X1023cm~3). 

III. THE GAS OF SLOWLY VARYING DENSITY 

1. The Thomas-Fermi Equation 

For a first orientation we shall derive, from our general 
variational principle, the elementary Thomas-Fermi 
equation. For this purpose, we use the functional (18) 
and in (16) we neglect exchange and correlation effects, 
thus setting C2=0. We approximate the kinetic-energy 
term by its form for a free-electron gas, i.e., 

where the Fermi momentum kp is given by 

This results in 

f 1 fn{r)n{xf) 
£ v M = / v(i)n(r)dr+- / drdx' 

J 2 J Ir-r 'l 

(50) 

(51) 

+TO(W)21* / [n{r)JHr. (52) 

To determine n(r) we now set 

d\ Ev[n}-v / n{r)dx = 0, (53) 

where /x is a Lagrange parameter. This results in the 
equation 

»(*)+/ ^r ,+|(37r2)2/3[#(r)]2/3-M=0. (54) 
J | r— rr | 

If we now introduce the "internal" potential 

n{x') 
* ( ' ) = / ~dr', 

J r— r 
(55) 

(54) is equivalent to the pair of equations 

»(r)= (l/3x*){20-Hr)-«,(r)]}3 / 2 , (56) 
and 

V2^(r)=~47r^(r). (57) 
From (56) and (57) we can eliminate n(r) and arrive at 

the Thomas-Fermi equation 

V%(r)= (-27/2/37r)[M-^(r)-^(r)]3/2. (58) 

2. The Gradient Expansion 

It is well known that one condition for the validity 
of the Thomas-Fermi equation is that n(r) must be a 
slowly varying function of r. This suggests study of the 
functional G[n], where n has the form 

with 
n(t)=<p(r/ro), 

r0—>oo . 

(59) 

(60) 

It is obvious that this is quite a different class of systems 
than that considered in Part II (n=no+n, n/m^l), 
since now we shall allow <p to have substantial varia­
tions. On the other hand, whereas in Part II, ft could 
contain arbitrarily short wavelengths, these are here 
ruled out as ro becomes large. 

We now make the basic assumption that for large r0, 
the partial energy density gt\jt] may be expanded in 
the form 

3 

£rM=£oO*W)+E gi(w(r))-Vi»(r) 

+ L (WuH»(r))-V<»(r)VXr) 

+^ ( 2 ) 0<r ) )*V,V^( r ) ]+ . . . . (61) 

Here successive terms correspond to successive negative 
powers of the scale parameter r0- Quantities like 
go(n(t)), gi(n(r)) etc., are functions (not functional) 
of n(t). No general proof of the existence of such an 
expansion is known to us, although it can be formally 
verified in special cases, e.g., when G[n(r)~] can be ex­
panded in powers of ]ji(r) — ni\. At the same time, 
we know that, for a finite ro, the series does not strictly 
converge (see the discussion at the end of Sec. II.3), 
but we may expect it to be useful (in the sense of asymp­
totic convergence) for sufficiently large values of r0. 

Now a good deal of progress can be made, using only 
the fact that gx\ji}- is a universal functional of n, 
independent of v(t). This requires gt\ji] to be invariant 
under rotations about r. The coefficients gtj, • • • (n(r)), 
being functions of the scalar n, are of course invariant 
under rotations. Hence one finds by elementary con­
siderations that grDO must have the form 

grM=^oW + [g2(a)WV2^+^2(6)(w)(V^-V^)] 
+terms of order V;4. (62) 

A further simplification results from the fact that we 
may eliminate from gx\jt] an arbitrary divergence 
HtV^r*[V] (see the end of Sec. 1.3). It is then elemen­
tary to show that gx[n] may be replaced by 

gr\jt]==go(n)+g2(2)(n)Vn'Vn 
+ (£4(2) (n) (v%) (V2w)+£4

(3) (n) (V2n) (Vn-Vn) 
+£4(4) (») (V»- Vn)2}+0(Vi«). (63) 



Here the subscripts refer to the number of gradient 
operators (or the order in 1/V0) and the superscripts to 
the number of times that n appears to the right of 
fo(F)(»). 

I t may be worth recalling that while gr[n] is an 
admissible density function in the sense that 
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Now let us set 

• / • 

G [ » ] = / gr[n]dr, (64) 

it differs from the energy density function gx[n~], Eq. 
(18), by a divergence. 

3. Identification of the Coefficients of the 
Gradient Expansion 

We shall now express the coefficients gn{v){n) ap­
pearing in Eq. (63) in terms of the expansion coef­
ficients, in powers of q, of the electronic polarizability 
a(q), and similar higher order, nonlinear, response 
functions. 

We do this by applying our general expression (63) to 
the case of a nearly uniform electron gas, considered 
already in Sec. I I . 2. We go, however, beyond (28) and 
write 

X X2 

»(r) = » o + ~ E & i ( q ) * - * " + - £ J2(g)<r-'«"+- • • • (65) 

The linear- and second-, third-, etc., order response 
functions are then defined by the relations 

bi(q) = a(q)a(q), 

h(q)= E 0L(qhq2)a(q1)a(q2), (66) 
q1-fq2=q 

etc. 

Now let us compare these expressions with what one 
obtains with the use of (63). We require that 
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(69) 

, (70) 

(71) 

(72) 

+ 2g4*Y+---}fti(q) = 0, (73) 

q^O, 

X4TT a(q) 

ft * f 

1 
w = w 0 + - E [X&1(q)+X2^(q)+- • • > - i q ' 

Q « 

M ^ M O + X M I + X ^ H . 

Collecting terms of order X°, X1, X2, we find 

g</(»o)—Mo=0, 

a(q)+ \-+go"+2g2Wq> 

giving 
; / \ 2 ^ . (2) -

«--K-aH£)- 2x J 
<Z4+-

Also clearly 

Similarly, we obtain 

o(q). 

(74) 

J«1=0. 

62(q) = Z q2+--' a (q ' )« (q -q ' ) - (75) 

If we now expand the response functions in powers of q, 

8n 
'*!>]-/* / n(r)dt = 0. (67) 

This gives 

a{q)=\+ciq
i+ciq

i+---. 

m,n i,j 

we can identify the functions g^v\ Thus 

£o747r=-C2, 

g2 ( 2 ) / 47 r= | ( "^+^2 2 ) , 

^ ( 2 ) / 4 7 r = K - ^ 6 + 2 w 4 - ^ 2 8 ) . 

(76) 

(77) 

(78) 

(79) 

(80) 

v ^ + • ; — ^ r ' + £ o , - £ 2
( 2 ) / 

J r—r 
(V^)2 

-2^2(2)V2^+3^4<2)/(V2w)2+2^4(2)//(Vw)2V% 

+ 2g4(2)/V^-V(V%)+2g4
(2)(V2V%) 

+g4 (3 ) / /(V^)4+2g4
(3 )V^-V(V^)2 

+g4 (3 )(V2(V^)2~2V^-V(V2w)-2(V%)2) 

-3g4(4) /(V^)4-4^4 ( 4 )V2^(V^)2-4g4 ( 4 )V^-V(V^)2 

+ M=0. (68) 

Similarly all other coefficients gn(2)(n) can be expressed 
in terms of the expansion coefficients cn of the linear 
polarizability a(q) of an electron gas of density n. 

In an analogous manner we can express all gM
(3) in 

terms of a(qi) and a(qi,q2); and generally g^(v) in terms 
of a(qi), •••a(qi,q2 ,---q^-i)-

On dimensional grounds we can see from (63) that 
the gradient expansion requires 

and 

\Vn\/n«.kF(n) 

| V » V / » | / | V » | « * F . ( » ) . 

(81) 

(82) 
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Both of these conditions are necessary. For while (81) 
would admit the case of a nearly uniform gas with a 
small but short-wavelength nonuniformity, this and 
similar cases are excluded by (82), as they must be. 

4. Partial Summation of Gradient Expansion 

In the preceding section we have expressed the coef­
ficient g/2) in terms of the expansion coefficient c% of 
the polarizability a(q), Eq. (76). However, we may apply 
the expression (63) to the special case of the gas of 
almost constant density, discussed in Part II . This shows 
that the leading term go(n) and the subsequent sub-
series involving coefficients gn{2){n) may be summed to 
yield 

I r W = g[o(n(r ) )+/ '^n( r ) ( r , )Cn(r+i r / ) -w(r ) ] 

X[w(r - f r ' ) -w( r ) ] r f r ' - (83) 

apart possibly from terms of the form of a divergence 
or of higher order in the superscript v of gn

{v)> Here 

1 2TT/ 1 \ 
^n(r )(r /) = - E - ( — \e-^\ (84) 

U q q2\en(T)(q)/ 

The form (S3) of gr has the merit of being exact in both 
limiting cases where either the density has everywhere 
nearly the same value (see Part II) or is slowly varying. 
Its quantitative value for calculating the electronic 
structure of actual atomic, molecular, or solid-state 
systems is at present uncertain but is being examined. 
However, it is already clear that if applied to an atom 
it will, unlike the simple Thomas-Fermi theory, yield: 
(1) a finite density at the nucleus, and (2) oscillations 
in the charge density corresponding to shell structure. 

5. Approximate Expressions for the Coefficients 
of the Gradient Expansion 

In the previous section we have expressed the coef­
ficients g/^ appearing in the gradient expansion (63) 
in terms of properties of the uniform electron gas. We 
now collect some results of existing calculations refer­
ring to the uniform electron gas which are useful for 
our present purposes. 

0- go(n) 

This is the sum of the kinetic+exchange+correlation 
energy density of a uniform gas of density n. Here one 
has available the high-density expansion of Gell-Mann 
and Brueckner14; 

(2.21 0.916 1 
go(n)=\ +0.062lnr s -0 .096+O(r s ) \n, (85) 

1 rs
2 rs J 

where rs is the radius of the Wigner-Seitz sphere defined 
by 

i*r*=l/n. (86) 

This expression is believed to be reasonably accurate 
only for rs<l. At lower densities, such as occur in 
metals (2<rs<5), various approximate expressions 
have been proposed. One is due to Wigner15 

go(ra)-
2.21 0.916 0.88 

rs 
rs+7.S 

(87) 

Other approximations are due to Hubbard,16 Nozieres 
and Pines,17 and Gaskell.18 

*. £ M ( 2 ) W 

These coefficients are all determined in terms of the 
electronic polarizability, a(q). For this latter quantity 
there is available, at present, a random-phase expres­
sion, Eq. (41), which gives 

a(q) = -
2T 

kT
2 

and 
(2) £2 

47T 

(2) 

1 

24 j ^ 

1 

1 

^ / ' 

1 Si 

4x 180 kfkf* 

(88) 

(89) 

(90) 

Inclusion of the first of these in the energy expression 
agrees with a correction to the Thomas-Fermi energy 
functional derived by Kompaneets and Pavlovskii.3 

An expression for a(q), allowing in an approximate 
manner for exchange effects has been proposed by 
Hubbard.16 I t is 

«(?) = , 4 
2 q2-{-kF~/ KT 

where S(q) is denned in Eq. (43). This form yields 

4TT 

-H——Y 
2 4 \ W kF*J 

(91) 

(92) 

For typical metallic densities this has the opposite sign 
from the random-phase approximation expression (88). 
Thus we see that the lowest nonvanishing gradient cor­
rection to the Thomas-Fermi theory depends quite 
sensitively on refinements in the theory of the electronic 
polarizability, a(q). 

14 M. Gell-Mann and K. Brueckner, Phys. Rev. 106, 364 (1957). 

15 E. P. Wigner, Phys. Rev. 40, 1002 (1934). 
16 J. Hubbard, Proc. Roy. Soc. (London) A243, 336 (1957). 
17 P. Nozieres and D. Pines, Phys. Rev. I l l , 442 (1958). 
18 T. Gaskell, Proc. Phys. Soc. (London) 77, 1182 (1961); 80, 

1091 (1962). 
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IV. CONCLUDING REMARKS 

In the preceding sections we have developed a theory 
of the electronic ground state which is exact in two 
limiting cases: The case of a nearly constant density 
(w=Wo+w(r), fl(r)/fio<<^l) and the case of a slowly 
varying density. Actual electronic systems do not belong 
to either of these two categories. The most promising 
formulation of the theory at present appears to be that 
obtained by partial summation of the gradient expan­
sion (Sec. III.4). I t has, however, not yet been tested 
in actual physical problems. But regardless of the out­
come of this test, it is hoped that the considerations of 
this paper shed some new light on the problem of the 

I. INTRODUCTION 

TH E advent of masers and lasers has stimulated a 
great deal of interest in the interaction of intense 

electromagnetic fields with matter. This activity has 
been focused on three different aspects of the subject. 
First, a great deal of attention has been devoted to the 
dynamics of production of high-intensity light.1 A 

* A preliminary version of this work was presented at the 
Pasadena Meeting of the American Physical Society, Bull. Am. 
Phys. Soc. 8, 615 (1963). 

f Present address: Lowell Technological Institute, Lowell, 
Massachusetts; on leave from the U. S. Naval Ordnance 
Laboratory. 

t National Academy of Sciences—National Research Council 
Postdoctoral Research Associate, 1962-64. 

1 J. R. Singer, Masers (John Wiley & Sons, Inc., New York, 
1900); F. Schwabl and W. Thirring (to be published); W. E. 
Lamb, Jr., Lecture Notes, Enrico Fermi International School of 
Physics, Varenna, 1963 (unpublished). 

inhomogeneous electron gas and may suggest further 
developments. 
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second area of concentration is the question of proper 
description of the electromagnetic radiation emanating 
from a laser; i.e., questions of coherence and correla­
tion.2 And finally, the problem of interaction of laser 
light with matter has attracted considerable interest.3 

I t is this latter question to which we are devoting our­
selves in this paper. 

The particular problem of immediate interest is the 
effect of the presence of the high-intensity field on the 
Compton (Thomson) scattering amplitude. Recall that 
the Thomson amplitude describes the scattering of a 

2 R. Glauber, Phys. Rev. 130, 2529 (1963); E. C. G. Sudarshan, 
Phys. Rev. Letters 10, 277 (1963); E. Wolf, Proc. Phys. Soc. 
(London) 80, 1269 (1962). 

3 J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. 
Pershan, Phys. Rev. 127, 1918 (1962); Z. Fried and W. M. Frank, 
Nuovo Cimento 27, 218 (1963). 
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"Thomson" scattering of a high-intensity, low-frequency, circularly-polarized electromagnetic wave by a 
free electron is considered. We find that by neglecting radiative corrections and pair effects, the Feynman-
Dyson perturbation expansion is summable, and the sum can be analytically continued in the form of a sum 
of continued fractions. By imposing the boundary conditions that at t— ± °° the photons and target electron 
propagate as free particles, we obtain results which differ from those reported by Brown and Kibble and by 
Goldman. In particular our results differ in two aspects. The first difference is in the kinematics; namely, we 
find no intensity-dependent frequency shift in the scattered photon. The second difference is in the dynamics; 
that is, we obtain a different expression for the scattering amplitude. Both of these changes originate in the 
choice of boundary conditions. Instead of treating the asymptotic radiation field classically, we choose our 
states as linear combinations of occupation-number states. Finally, contact is made with the results of Brown 
and Kibble and of Goldman using a mixed set of classical and quantum boundary values. 


